一种基于空间光调制器的微透镜阵列制备技术

申 溯 浦东林 胡 进 陈林森

(苏州大学信息光学工程研究所, 江苏 苏州 215026)

摘要 提出了一种基于空间光调制器的并行光刻制备微透镜阵列的技术。采用数字微反射镜器件输入光刻图形, 结合热回流技术,制作任意结构和排布的微透镜阵列。无限远校正显微微缩光学系统的长焦深保证了深纹光刻的 实现,热回流法提供了良好的表面光滑度。与传统逐层并行光刻和掩模曝光技术相比,提出的技术方案更加便捷 灵活,特别适合制作特征尺寸在数微米至百微米的微透镜阵列器件。得到的微透镜阵列模版经过电铸转移为金属 模具,利用紫外卷对卷纳米压印技术在柔性基底上制备微透镜阵列器件,在超薄液晶显示、有机发光二极管 (OLED)照明等领域有广泛应用。

关键词 光学制造;微透镜阵列;光刻;空间光调制器

中图分类号 O435.1 文献标识码 A doi: 10.3788/CJL201239.0316003

Fabrication of Microlens Arrays Based on Spatial Light Modulator

Shen Su Pu Donglin Hu Jin Chen Linsen

(Institute of Information Optical Engineering, Soochow University, Suzhou, Jiangsu 215026, China)

Abstract An approach of fabrication of microlens arrays using spatial light modulator based lithography method is proposed. Combined with themal reflow method, digital micro-mirror device is used to pattern microstructure, and microlens arrays with arbitrary structure and topology can be obtained. The patterns on thick photoresist layer are projected by an infinity-corrected optical system. Good surface quality can be realized by thermal reflow method. Compared with classical stereolithography and mask-based exposure lithography method, the proposed method has the advantage of low-cost and high efficiency, especially suitable for fabricating microlens arrays which feature size ranging from several micrometers to hundreds of micrometers. The obtained microlens array can be transferred to a nickel mold by quasi-lithography electrodeposition and modeling (LIGA) process, which can be used as an imprinting mold. The flexible microlens array film can find wide application in novel ultra-thin liquid crystal displays, organic light-emitting diodes (OLED), etc.

Key words optical fabrication; microlens array; lithography; spatial light modulator OCIS codes 220.4000; 220.3630; 230.3990; 230.6120; 220.3740

1 引 言

微透镜阵列器件是微光学元器件中最为重要的 一类,它具有许多独特的光学性质^[1]。可通过对微 透镜阵列的形状、排布、占空比等参数的设计,对入 射光实现扩散、整形、均匀、聚焦、成像等作用。因 此,微透镜阵列器件在平板显示与照明、集成光学、 立体成像、增强型光电检测、光纤耦合等领域中都有 着广泛的应用,制备微透镜阵列也成为微纳加工领 域的热点研究课题。 在传统非光刻的微透镜制作方法中,金刚石切 削和喷墨打印技术被研究和应用得最多。金刚石切 削需要复杂的运动精度控制反馈系统,加工设备昂 贵。麻省理工学院 Forest 等^[2]提出微煅造技术,虽 然改善了表面粗糙度,但切削和抛光的两次处理增 加了保证机械运行精度的难题,运行效率低。在文 献[2]中给出了口径1 mm 微透镜阵列的实验结果。 喷墨打印在对位精度和制作口径方面也有类似的局 限性^[3]。随着高分辨率光刻设备使用的逐步普及,

收稿日期: 2011-09-05; 收到修改稿日期: 2011-11-30

基金项目:国家自然科学基金(60907010)、江苏省高校自然科学研究重大项目(10KJA140048)资助课题。

作者简介: 申 溯(1979—),男,硕士,助理研究员,主要从事微纳加工和器件方面的研究。

人们将光刻工艺与材料的物理化学特性相结合,提 出了离子交换、激光直写、热回流、张力压印、灰度光 刻和扩散曝光等多种制备技术^[4~14]。在这些技术 中,基于空间光调制器的激光直写方法引人注目。 Lu 等^[6]用数字微反射镜阵列(DMD)作为灰度动态 掩模,微缩输入图像后,固化液态紫外光敏树脂材 料,制备了直径 230 μm、周期 510 μm 微透镜阵列。 但是该方法对工艺控制和材料要求高,不适合制作 高占空比、小口径的微透镜阵列。

本文提出了一种基于空间光调制器的并行光刻 微透镜阵列制备方法。将微透镜结构输入数字微反 射镜,微缩投影在基板表面,类似于投影光刻^[15],逐 区域曝光和显影后,结合热回流工艺和光刻-电沉 积-铸模(LIGA)工艺,经过紫外压印在柔性基底上 得到任意排布和不同形状的微透镜阵列。提出的方 法可用于制备口径在数微米至数百微米的微透镜阵 列,均匀可靠且灵活便捷,特别适合制作各种复杂排 布和形状的微透镜阵列,在光扩散片^[16]、提高有机

发光二极管(OLED)效率等方面有重要的应用。

2 光路系统及制备流程

基于空间光调制器的并行光刻制作微透镜阵列 的系统,如图1所示。光源1为波长405 nm 的半导 体激光器,输出功率50 mW。出射光经扩束后进入 积分匀光系统3,反射镜4将光反射至空间光调制 器数字微反射镜阵列 DMD5 上。当 DMD 微镜片 +12°偏转时,反射光进入光学系统形成亮态;当微 镜片呈-12°偏转时,反射光就不能进入光学系统, 形成暗态。相比于其他空间光调制器,DMD 的主 要优点在于占空比高(87%),对偏振不敏感,因此光 能效利用率可达60%以上,特别适合需要强曝光的 厚胶工艺。

DMD中的图像由计算机输入,每个微镜片边 长为13.68 μm。一幅图像由1024 pixel×768 pixel 个微镜片构成,通过移动平台逐区域分布曝光,因此 构成了一种动态无掩模投影光刻系统。

405 nm wavelength laser source;
 beam shaping lens;
 integrated homogenizing system;
 4,15: mirror; 5: DMD; 6,8,14: beam splitter;
 infinity-corrected optical systems;
 PZT; 10: objective lens;
 x-y stage; 12. CCD;
 four-quadrant detector;
 detect laser; 17: controller;
 computer.

图 1 基于空间光调制器的微透镜制作系统

Fig. 1 Optical system based on spatial light modulator for fabricating microlens array

经 DMD 反射的光进入一无限远校正显微微缩 光学系统 7,它主要由 Tube lens 镜片组和显微物镜 10 构成。这个系统主要有两个优点^[17]:一是显微物 镜 10 和 Tube lens 之间是平行光束,因此在运行中 自聚焦系统驱动 z 轴压电陶瓷(PZT)9 伺服时,投 影像质受到的影响小。二是可在物镜和 Tube lens 之间增加如棱镜等光学元件方便实时监测。使用波 长为 680 nm 的红色激光器 16 作为监测光源。四象 限探测器 13 将光斑边缘尺寸信号反馈给计算机 18,利用边缘检测和差分算法实现焦点实时追踪。 驱动物镜的 PZT 9 精度 10 nm,行程 20 μ m,响应速 度在数毫秒量级。*xy* 平台由直线电机驱动,重复 定位精度 100 nm,满足制作微透镜阵列时对拼接精 度的要求。

热回流法中光刻胶的表面张力大于基底表面

能,熔融后形成微透镜形状。残留的光刻胶层会导 致流平效应,因此必须将曝光单元之间的光刻胶去 除干净。制作微透镜阵列的光刻胶层厚度在几个至 数十微米之间,远远大于其在半导体和液晶显示制 备的标准工艺。因此,制备系统要具备在厚胶中的感 光能力。图 2(a)~(c)为 50 倍微缩物镜(Olymbus, MPLFN,50×/0.8)在焦点、偏离焦点±8 μ m 时 CCD 中对 DMD 输入的十字叉图形的成像情况。结果表 明,当偏离物镜焦点位置时,微缩成像质量仍然得到 保证。这将有利于微透镜阵列的制备。

微透镜阵列的制备流程如图 3(a)~(e)所示。首 先在基板上旋涂光刻胶(苏州瑞红 RZJ309),采用如 图 1 所示的 DMD 投影曝光系统曝光显影[图 3(b)], 留下的光刻胶结构经过热回流后形成微透镜形状 [图 3(c)]。再利用准LIGA工艺,将微透镜结构转移

图 2 微缩成像随 z 轴距离变化的微缩成像。(a)焦点前 8 µm;(b)焦点处;(c)焦点后 8 µm

Fig. 2 Images of a cross piece in a sequence of z potisions. (a) $-8 \mu m$; (b) at focal point; (c) $+8 \mu m$

图 3 提出的微透镜阵列制备流程示意图

Fig. 3 Processes of the proposed method for fabricating microlens arrays

至金属镍版上[图 3(d)]。将镍版作为压印模版,通 过紫外纳米压印在聚碳酸酯、聚酯等柔性材料上制 备微透镜阵列,如图 3(e)所示。所使用的压印材料 为紫外固化丙烯酸酯,其中掺杂了光引发剂、扩散剂 和多种单体保证压印胶具有较小的收缩率和高的透 射率,一定的硬度和较好的脱模性。在标准测试条件 下,折射率为1.495,黏度在 200~300 mPa•s之间。

3 实验结果和讨论

图 4 是基于空间光调制器的光刻方法制备的微 透镜阵列的电子显微镜照片。图 4(a)~(d)分别为 10,30,40 和 50 μm 口径微透镜阵列,图 4(e)~(g) 长轴为 50 μm,短轴分别为 10,20 和 30 μm 的椭圆 形微透镜阵列。图 4(h)和(g)分别呈蜂窝和矩形排 列。图 4(a)~(h)的插图为输入 DMD 中的图形。 因为使用的是正性光刻胶,所以有微透镜结构处不 曝光,输入图形呈黑色;微透镜之间曝光去胶,输入 图形呈白色。为了尽量提高占空比和考虑到系统的

图 4 制备的微透镜阵列电子显微镜照片。(a) 10 μm 圆形;(b) 30μm 圆形;(c) 40 μm 圆形;(d) 50 μm 圆形; (e) 50~10 μm 椭圆;(f) 50~20 μm 椭圆;(g) 50~30 μm 蜂窝排列;(h) 50~30μm 正交排列 Fig. 4 SEM photos of the fabricated microlens array. (a) 10 μm round; (b) 30μm round; (c) 40 μm round; (d) 50 μm round; (e) 50~10 μm ellipse; (f) 50~20 μm ellipse; (g) 50~30 μm honeycomb arrangement; (h) 50~30μm orthogonal arrangement 光刻分辨率,输入图形中微透镜结构之间曝光间隙 至少有 2 pixel。经过微缩 1/20 后,结构之间的间隙 只有 1.5 μm。本系统 *xy* 平台精度在 100 nm,从 实验结果上看基本没有图形拼接的痕迹,不会影响 微透镜阵列的光学性能。另外,虽然输入图像的 DMD 像素是离散的,但经过微缩后没有明显的台 阶效应,经过热熔后会更加平滑。可以看到,本文方 法在本质上是一种并行微缩无掩模光刻技术,可由 计算机输入任意排布和形状的微结构。光刻后,经 过 120 ℃、15 min 热回流,光刻胶"岛"熔融回流,受 表面张力作用得到曲面形貌的微透镜阵列。

热回流法得到的微透镜形状与光刻胶体积和光 刻胶-空气-基底的表面性质有关。图 5(a)为利用 光刻的模版经过压印后得到的 50 μ m 口径圆形微透镜 阵列的形貌测试图(Keyence, VK 9700)。 图 5(b)为沿微透镜截面的测试图,曝光显影后口径 46 μ m,透镜之间出现 4 μ m 左右间隔。图 5(c)为显微镜下的聚焦照片。图 5(d)为测试形貌(细实线)与理想的热回流效果(粗实线)比较,其中基底直径 2r,涂胶厚度 T,热熔后微透镜高度为 h。熔融前光刻 胶厚度 T 实测得 7.3 μ m,理想的热回流后的高度 h 为 13.1 μ m,实验中 h 高度为 9.60 μ m。图 5(d)中虚线是理想的半球形微透镜形状。理想效果是按照热回流前后光刻胶体积不变的假设,求解公式

$$T = \frac{h}{6} \left(3 + \frac{h^2}{r^2}\right). \tag{1}$$

Fig. 5 Profile of flexible microlens array film. (a) measured profile; (b) cross-section profile of the position pointed by the arrow in (a); (c) light spots pattern; (d) comparison of experimental case with the ideal case (the inset is the diagram of thermal reflow)

造成实验与理论结果出现差别主要由于光刻胶 组分不同,在加热熔融时含有的氮萘醌易蒸发,导致 热回流后的体积缩小^[18]。另外,加热过程光刻胶高 分子链互连,引起弹性模量增大,抵消了表面张力的 作用。理想情况下和实验中热熔后,光刻胶与基底 接触角都为 65°左右。减少热回流法制备微透镜的 实验误差,一方面需要选择分子链交连速度慢的光 刻胶,另一方面需要根据不同的微透镜尺寸和胶厚 优化工艺参数,保证热回流时表面张力充分作用。 在模具转移过程中,紫外固化丙烯酸酯在固化过程 中本身会有收缩,总体微结构的复制保真度在 92% 以上。

4 结 论

本文將基于空间光调制器的并行光刻技术与热 回流技术结合,制备微透镜阵列。在工艺上具有简 单便捷的优点,降低了传统立体光刻对光学系统和 材料的要求,也发挥了空间光调制器并行输入的特 点。热回流技术虽然在控制微透镜形貌精度方面有 不足,但特别适合制备对微透镜微观结构要求较低、 对宏观均匀性和幅面等要求较高的器件,如平板显示光扩散片和提高OLED效率的微透镜阵列薄膜。

致谢 作者特别感谢周芳对实验工作所做的贡献。

参考文献

- D. Asselin, P. Topart, P. Grenier. Threading the needle[C]. SPIE's Oemagazine, 2005, 5: 22~24
- 2 Crai R. Forest, Miguel A. Saez, Ian W. Hunter. Microforging technique for rapid. low-cost fabrication of lens array molds[J]. *Appl. Opt.*, 2007, **46**(36): 8668~8673
- 3 D. L. MacFarlane, V. Narayan, J. A. Tatum *et al.*. Microjet fabrication of microlens arrays [J]. *IEEE Photon. Technol. Lett.*, 1994, 6(9): 1112~1114
- 4 Sumei Zhou, Desen Liu, Xiaoping Jiang. Fabrication of hexagonal microlens arrays[C]. SPIE, 2007, 6838: 683812
- 5 Ren Yang, Wanjun Wang. Fabrication of out-of-plane SU-8 refractive microlens using directly lithography method [C]. SPIE, 2004, **5346**: 151~159
- 6 Yi Lu, Shaochen Chen. Direct write of microlens array using digital projection photopolymerization [J]. Appl. Phys. Lett., 2008, 92(4): 041109
- 7 Lars Erdmann, Arnaud Deparnay, Mario Langle *et al.*. MOEMS-based lithography for the fabrication of micro-optical components [J]. J. Microlith. Microfab. Microsyst., 2005, 4(4): 041601
- 8 Feidhlim T. O' Neill, John T. Sheridan. Photoresist reflow method of microlens production Part 1: background and experiments[J]. Optik, 2002, 113(9): 391~404
- 9 Hsiharng Yang, Ching Kongchao, Mau Kuowei *et al.*. High fillfactor microlens array mold insert fabrication using a thermal reflow process [J]. J. Micromech. Microeng, 2004, 14(8): 1197~1204

- 10 Liang Tingjiang, Tzu-Chien Huang, Chienren Chiu *et al.*. Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabrication using dry film resist[J]. *Opt. Express*, 2007, **15**(19): 12088~12094
- 11 Kei Hanai, Yoshinori Matsumoto. Comparison of micro chrome patterns in gray scale lithography [C]. SPIE, 2004, 5342: 221~228
- 12 Sung II Chang, Jun Bo Yoon, Hongki Kim et al.. Microlens array diffuser for a light-emitting diode backlight system [J]. Opt. Lett., 2006, 31(20): 3016~3018
- 13 Li Feng, Chen Sihai, Lai Jianjun *et al.*. Design and fabrication of polymer microlens array with self-written waveguide[J]. *Chinese J. Lasers*, 2011, 38(3): 0310003
 李 风,陈四海,赖建军等. 自写人光波导聚合物微透镜阵列的 设计与制作[J]. 中国激光, 2011, 38(3): 0310003
- 14 Nathan J. Jenness, Kurt D. Wulff, Matthew S. Johannes et al.. Three dimensional parallel holographic micropatterning using a spatial light modulator [J]. Opt. Express, 2008, 16 (20): 15942~15948
- 15 Zhou Yuan, Li Yanqiu, Liu Guangcan. Study on pellicle optimization and polarization aberration induced by pellicle in hyper numerical aperture lithography [J]. Chinese J. Lasers, 2011, 38(4): 0407001
 周 远,李艳秋,刘光灿. 超大数值孔径光刻中掩模保护膜优化 及偏振像差研究[J]. 中国激光, 2011, 38(4): 0407001
- 16 Zhuang Xiaolei, Zhou Fang, Shen Su *et al.*. Characteristics of diffusers with cascaded-microlens arrays[J]. Acta Optica Sinica, 2010, **30**(11): 3306~3310
 庄孝磊,周 芳,申 溯等. 层叠微透镜阵列光扩散片特性研究 [I]. 光学学报, 2010, **30**(11): 3306~3310
- 17 Paras N. Prasad. Introduction to Biophotonics [M]. New Jeersey: John Wiley & Sons Inc, 2003. 490~495
- 18 Feidhlim T. O' Neill, John T. Sheridan. Photoresist reflow method of microlens production Part II: analytic models [J]. Optik, 2002, 113(9): 405~419

栏目编辑:韩 峰